Blood-brain barrier pharmacoproteomics-based reconstruction of the in vivo brain distribution of P-glycoprotein substrates in cynomolgus monkeys.

نویسندگان

  • Yasuo Uchida
  • Kentaro Wakayama
  • Sumio Ohtsuki
  • Masato Chiba
  • Tomoyuki Ohe
  • Yasuyuki Ishii
  • Tetsuya Terasaki
چکیده

The aim of this study was to investigate whether in vivo drug distribution in brain in monkeys can be reconstructed by integrating four factors: protein expression levels of P-glycoprotein (P-gp)/multidrug resistance protein 1 at the blood-brain barrier (BBB), in vitro transport activity per P-gp molecule, and unbound drug fractions in plasma and brain. For five P-gp substrates (indinavir, quinidine, loperamide, paclitaxel, and verapamil) and one nonsubstrate (diazepam), in vitro P-gp transport activities were determined by measuring transcellular transport across monolayers of cynomolgus monkey P-gp-transfected LLC-PK1 and parental cells. In vivo P-gp functions at the BBB were reconstructed from in vitro P-gp transport activities and P-gp expression levels in transfected cells and cynomolgus brain microvessels. Brain-to-plasma concentration ratios (Kp,brain) were reconstructed by integrating the reconstructed in vivo P-gp functions with drug unbound fractions in plasma and brain. For all compounds, the reconstructed Kp,brain values were within a 3-fold range of observed values, as determined by constant intravenous infusion in adult cynomolgus monkeys. Among four factors, plasma unbound fraction was the most sensitive factor to species differences in Kp,brain between monkeys and mice. Unbound brain-to-plasma concentration ratios (Kp,uu,brain) were reconstructed as the reciprocal of the reconstructed in vivo P-gp functions, and the reconstructed Kp,uu,brain values were within a 3-fold range of in vivo values, which were estimated from observed Kp,brain and unbound fractions. This study experimentally demonstrates that brain distributions of P-gp substrates and nonsubstrate can be reconstructed on the basis of pharmacoproteomic concept in monkeys, which serve as a robust model of drug distribution in human brain.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blood-brain barrier (BBB) pharmacoproteomics: reconstruction of in vivo brain distribution of 11 P-glycoprotein substrates based on the BBB transporter protein concentration, in vitro intrinsic transport activity, and unbound fraction in plasma and brain in mice.

The purpose of this study was to examine whether in vivo drug distribution to the brain can be reconstructed by integrating P-glycoprotein (P-gp)/mdr1a expression levels, P-gp in vitro activity, and drug unbound fractions in mouse plasma and brain. For 11 P-gp substrates, in vitro P-gp transport activities were determined by measuring transcellular transport across monolayers of mouse P-gp-tran...

متن کامل

Pharmacoproteomics-based reconstruction of in vivo P-glycoprotein function at blood-brain barrier and brain distribution of substrate verapamil in pentylenetetrazole-kindled epilepsy, spontaneous epilepsy, and phenytoin treatment models.

The purpose of this study was to demonstrate experimentally that alterations of in vivo transporter function at the blood-brain barrier (BBB) in disease and during pharmacotherapy can be reconstructed from in vitro data based on our established pharmacoproteomic concept of reconstructing in vivo function by integrating intrinsic transport activity per transporter molecule and absolute protein e...

متن کامل

Utility of cerebrospinal fluid drug concentration as a surrogate for unbound brain concentration in nonhuman primates.

In central nervous system drug discovery, cerebrospinal fluid (CSF) drug concentration (C(CSF)) has been widely used as a surrogate for unbound brain concentrations (C(u,brain)). However, previous rodent studies demonstrated that when drugs undergo active efflux by transporters, such as P-glycoprotein (P-gp), at the blood-brain barrier, the C(CSF) overestimates the corresponding C(u,brain). To ...

متن کامل

The Role of Nanoparticle in Brain Permeability: An in-vitro BBB Model

Membrane permeability and P-glycoprotein (P-gp) efflux system are regulating factors in the drug brain penetration. Recently, some drug delivery systems have been developed to overcome these limitations. In this study, Metoclopramid has been encapsulated in PLGA nanoparticles using the emulsification/solvent evaporation technique for in vitro evaluation of the effect of PLGA nanoparticles on BB...

متن کامل

The Role of Nanoparticle in Brain Permeability: An in-vitro BBB Model

Membrane permeability and P-glycoprotein (P-gp) efflux system are regulating factors in the drug brain penetration. Recently, some drug delivery systems have been developed to overcome these limitations. In this study, Metoclopramid has been encapsulated in PLGA nanoparticles using the emulsification/solvent evaporation technique for in vitro evaluation of the effect of PLGA nanoparticles on BB...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 350 3  شماره 

صفحات  -

تاریخ انتشار 2014